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Abstract
The Lax pair of the Ruijsenaars–Schneider model with interaction potential of
trigonometric type based onDnLie algebra is presented. We give a general form
for the Lax pair and prove partial results for smalln. Liouville integrability of
the corresponding system follows a series of involutive Hamiltonians generated
by the characteristic polynomial of the Lax matrix. The rational case appears
as a natural degeneration and the non-relativistic limit exactly leads to the
well-known Calogero–Moser system associated withDn Lie algebra.

PACS numbers: 02.20.−a, 03.65.Nk, 11.10.Lm

1. Introduction

Since a relativistic version of the Calogero–Moser (CM) model was first introduced by
Ruijsenaars and Schneider [1–3], much interest has been focused on this model and its
non-relativistic counterpart. It is a completely integrable many-body Hamiltonian system
describing a one-dimensionaln-particle system with pairwise interaction. The study has led
to fascinating mathematics and applications from lattice models in statistical physics [4, 5], to
the field theory and gauge theory [6], e.g. to the Seiberg–Witten theory [7], etc. For a review
see [8–10], and references therein.

Recently, the Lax pairs for the CM models in various root systems have been constructed
by Olshanetsky and Perelomov [11], using reduction on symmetric space, further given by
Inozemtsev in [12]. Later, D’Hoker and Phong [13] succeeded in constructing the Lax
pairs with spectral parameter for each of the finite-dimensional Lie algebra, as well as the
introduction of untwisted and twisted Calogero–Moser systems. Bordneret al [14–16] give
two types of universal realization for the Lax pairs associated with all of the Lie algebra:
the root type and the minimal type, with and without spectral parameters. Even for all of
the Coxeter group, the construction has been obtained in [17]. All of them do not apply the
reduction method under which condition one will confront some obstruction [18] but by using
pure Lie algebra construction. In [18], Hurtubise and Markman utilize the so called ‘structure
group’, which combines semi-simple group and the Weyl group, to construct the CM systems
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associated with the Hitchin system, which to some degree generalizes the results of references
[13–17]. Furthermore, the quantum version of the generalization has been developed in [19,20]
at least for degeneratepotentials of trigonometryafter the works of Olshanetsky and Perelomov
[21].

Regarding the RS model, only the Lax pair of theAN−1 type RS model was obtained
[2, 5, 22–25] and succeeded in recovering it by applying Hamiltonian reduction procedure on
two-dimensional current group [26]. Although the commutative operators for RS model based
on various type Lie algebra have been given by Komori and co-workers [27], Diejen [28, 29]
and Hasegawaet al [4, 30], the Lax integrability (or the Lax representation) of the other type
RS model is still an open problem [7].

In a recent work [31, 32], we have succeeded in constructing the Lax pairs for the rational
and trigonometricCn andBCn RS systems. Following that, ther-matrix structure for them
have been derived by Avanet al in [33]. Moreover, we give the more general ellipticCn and
BCn RS systems in [34] and calculate their spectral curves. In this paper, we concentrate
on generalizing the construction to theDn-type trigonometric Ruijsenaars–Schneider model.
It turns out that there surely exists a Lax pair for this system. By revealing the symmetry
property of this model, we shall give a general form of the Lax pair for genericn and verify its
rationality at least for smalln such asn = 2, 3, 4, 5, 6. Its integrability in the Liouville sense is
also depicted by givingn involutive integrals of motion. We also perform its non-relativistic
limit that coincides exactly with the previous known result for theDn Calogero–Moser system.
The rational degeneration of this system is also remarked.

The paper is organized as follows. The basic materials of theDn RS model are introduced
in section 2, where we propose a self-consistent dynamical system associating with the root
system ofDn. This includes construction of Hamiltonian for theDn RS system together with
its symmetry analysis, etc. The main results are shown in section 3. In the section, we present
a Lax pair and obtain an explicit general form for the Lax pair by imposing some additional
symmetry constraints. Section 4 is devoted to deriving the non-relativistic counterpart, the
Calogero–Moser model. Following are some remarks for the degenerate limit of rational case.
We conclude with some remarks on our constructions in the last section.

2. Model and equations of motion

Let us first review the basic materials about theDn RS model. Although much progress has
been made for generalization of the RS model [3, 27, 28, 31, 32, 34], there is no result for the
system which associates with the root system ofDn. Even up to now we do not know how to
define its Hamiltonian. But now we will give a reasonable definition for this system which
will be seen later.

In terms of the canonical variablespi, xi (i, j = 1, . . . , n) enjoying in the canonical
Poisson bracket

{pi, pj } = {xi, xj } = 0 {xi, pj } = δij (2.1)

we give firstly the Hamiltonian ofDn RS system

H =
n∑
i=1


epi

n∏
k� =i
(f (xik)f (xi + xk)) + e−pi

n∏
k� =i
(g(xik)g(xi + xk))


 (2.2)

where

f (x) := sin(x − γ )

sin(x)
(2.3)

g(x) := f (x)|γ→−γ xik := xi − xk
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andγ denotes the coupling constant. Then the canonical equations of motion could be

ẋi = {xi,H } = epi bi − e−pi b′
i (2.4)

ṗi = {pi,H } =
n∑
j� =i

(
epj bj (h(xji)− h(xj + xi)) + e−pj b′

j (ĥ(xji)− ĥ(xj + xi))
)

− epi bi


 n∑
j� =i
(h(xij ) + h(xi + xj ))




− e−pi b′
i


 n∑
j� =i
(ĥ(xij ) + ĥ(xi + xj ))


 (2.5)

where

h(x) := d lnf (x)

dx
ĥ(x) := d lng(x)

dx

bi =
n∏
k� =i
(f (xi − xk)f (xi + xk)) (2.6)

b′
i =

n∏
k� =i
(g(xi − xk)g(xi + xk)) .

Here, of coursexi = xi (t), pi = pi (t) and the superimposed dot denotest-differentiation.
For the convenience of analysis of symmetry, let us first give vector representation ofDn

Lie algebra. Introducing ann-dimensional orthonormal basis ofR
n,

ej · ek = δj,k j, k = 1,2, . . . , n (2.7)

then the sets of roots� and vector weights� of Dn are

� = {±(ej − ek),±(ej + ek) : j, k = 1,2, . . . , n andj < k} (2.8)

� = {ej ,−ej : j = 1,2, . . . , n }. (2.9)

The dynamical variables are canonical coordinates{xj} and their canonical conjugate momenta
{pj } with the Poisson brackets of equation (2.1). In a general sense, we denote them by
n-dimensional vectorsx andp,

x = (x1, x2, . . . , xn) ∈ R
n p = (p1, p2, . . . , pn) ∈ R

n.

So that the scalar products ofx andp with the rootsα · x, p · β, etc can be defined. The
Hamiltonian of equation (2.2) can be rewritten as

H = 1

2

∑
µ∈�


exp(µ · p)

∏
��β=µ−ν

f (β · x)+ exp(−µ · p)
∏

��β=−µ+ν

g(β · x)

 . (2.10)

Here, the condition� � β = µ − ν means that the summation is over rootsβ such that for
∃ν ∈ �

µ− ν = β ∈ �. (2.11)

So does for� � β = −µ + ν.
From the above-mentioned data, we can see that the definition for the Hamiltonian is

reasonable and well-defined whose form equation (2.2) or equation (2.10) is similar to the one
given in [31, 32, 34].
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3. Construction of the Lax pair

In this section, we concentrate our treatment to the explicit form of the Lax pair for theDn RS
system. Therefore, some previous results, as well as new results, could now be obtained in a
more straightforward manner by using the Lax pair.

3.1. Derivation of the Lax matrix for the Dn RS model

Similar to the definitions of the Lax matrixes for theCn andBCn RS models given in [32], we
suppose the Lax matrix for theDn RS model is one 2n × 2n matrix as follows:

L =
(
A B

C D

)
(3.1)

whereA, B, C, D aren × n matrixes (hereafter, we use the indicesi, j = 1, . . . , n)

Aij = epj bj
sinγ

sin(xij + γ )
Dij = e−pj b′

j

sinγ

sin(xji + γ )

Bij = (1 − δij )e−pj b′
j

sinγ

sin(xi + xj + γ )
+ δije

−pi b
′
i

wi
B̃ii (3.2)

Cij = (1 − δij )epj bj sinγ

sin(−xi − xj + γ )
+ δijepi

bi

w′
i

C̃ii .

Here, the notations ofwi,w′
i , vi are

wi :=
n∏
j� =i

sin(xi + xj + γ ) sin(xij + γ )

w′
i :=

n∏
j� =i

sin(xi + xj − γ ) sin(xij − γ ) (3.3)

vi :=
n∏
j� =i

sin(xi + xj ) sin(xij )

andB̃ii , C̃ii , the diagonal part of block matrixesB andC, are unknown and have to be solved
later.

In order to obtain the explicit form of̃Bii , C̃ii , we also assume the inverse ofL the
following 2n × 2n matrix (similar to the form for theCn andBCn cases)

L−1 =
(
Â B̂

Ĉ D̂

)
(3.4)

whereÂ, B̂, Ĉ, D̂ aren × n matrixes

Âij = e−pi b′
j

− sinγ

sin(xij − γ ) D̂ij = epi bj
− sinγ

sin(xji − γ )
B̂ij = (1 − δij )e−pi bj

− sinγ

sin(xi + xj − γ ) + δije
−pi bi

w′
i

C̃ii (3.5)

Ĉij = (1 − δij )epi b′
j

− sinγ

sin(−xi − xj − γ ) + δijepi
b′
i

wi
B̃ii .

If we impose an additional condition for̃Bii andC̃ii as

C̃ii = B̃ii |γ→−γ (3.6)
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then the equation

L · L−1 = Id (3.7)

can be solved and the solution reads

B̃ii = wi

b′
i


1 − bib′

i − sin2 γ

n∑
j� =i

(
b′
ibk

sin2(xik + γ )
+

b′
ib

′
k

sin2(xi + xk + γ )

)
1/2

(3.8)
C̃ii = B̃ii |γ→−γ .

So that

Bii = e−pi b
′
i

wi
B̃ii

(3.9)
Cii = epi

bi

w′
i

C̃ii = Bii |γ→−γ,pi→−pi .

Remarks. The above solution of equations (3.8) and (3.9) is obtained only by the diagonal
part of equation (3.7). It is not easy to verify if the off-diagonal part is consistent with the
diagonal part due to complicated functional relations. But for smalln such asn = 2, 3, 4, 5,
6 we can surely check that it is the very unique solution. In addition, it is unfortunate that we
are not able to give more simple forms forBii andCii. Here only forn = 2, 3, 4 we work out
the following results to shed a light on its appearance:

• for n = 2

B̃ii = sin2 γ
(3.10)

C̃ii = sin2 γ

• for n = 3

B̃ii = 1

2
sin2 γ


wi n∑

j� =i

1

sin(xi + xj + γ ) sin(xij + γ )
+ vi

n∑
j� =i

1

sin(xi + xj ) sin(xij )




C̃ii = 1

2
sin2 γ


w′

i

n∑
j� =i

1

sin(xi + xj − γ ) sin(xij − γ )
vi

n∑
j� =i

1

sin(xi + xj ) sin(xij )




= B̃ii |γ �→−γ (3.11)

• for n = 4

B̃ii = 1

2
sin2 γ


wi n∑

j� =i

1

sin(xi + xj + γ ) sin(xij + γ )

+ vi

n∑
j� =i

1

sin(xi + xj ) sin(xij )
− sin2 γ sin2(2xi + γ )




(3.12)

C̃ii = 1

2
sin2 γ


w′

i

n∑
j� =i

1

sin(xi + xj − γ ) sin(xij − γ )

+ vi

n∑
j� =i

1

sin(xi + xj ) sin(xij )
− sin2 γ sin2(2xi − γ )


 = B̃ii |γ �→−γ .
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With the Lax matrixL of equation (3.1), we could rewrite the Hamiltonian as

H =
n∑
j=1

(epj bj + e−pj b′
j ) = trL. (3.13)

The involutiven Hamiltonians can be generated by the characteristic polynomial of the Lax
matrix

det(L− v · Id) =
2n∑
j=0

(−1)j (vj + v2n−j )Hj + (−v)nHn (3.14)

with

{Hi,Hj } = 0 i, j = 1,2, . . . , n. (3.15)

For example, forn = 2,

det(L− v · Id) = v4 −H1v
3 +H2v

2 −H1v + 1 (3.16)

the function-independent Hamiltonian flowsH andH2 are

H1 = H = ep1f (x12)f (x1 + x2) + e−p1g(x12)g(x1 + x2)

+ ep2f (x21)f (x2 + x1) + e−p2g(x21)g(x2 + x1) (3.17)

H2 = 2
(
f (x12)g(x12) + f (x1 + x2)g(x1 + x2)

)
+ ep1+p2f (x1 + x2)

2 + e−p1−p2g(x1 + x2)
2

+ ep1−p2f (x12)
2 + ep2−p1g(x12)

2 + const (3.18)

where const= −2. Forn = 3, we have

det(L− v · Id) = v6 −H1v
5 +H2v

4 −H3v
3 +H2v

2 −H1v
1 + 1 (3.19)

and

H1 = H =
3∑
i=1


epi

3∏
k� =i
f (xik)f (xi + xk) + e−pi

3∏
k� =i
g(xik)g(xi + xk)




H2 = H̃2 − 1 (3.20)

H3 = H̃3 − 2H1. (3.21)

HereH̃ 2 andH̃3 are the involutive Hamiltonians defined for theD3 RS model by Diejen in
[28]:

H+ = e(−p1−p2+p3)/2f (−x1 − x2)f (−x1 + x3)f (−x2 + x3)

+ e(−p1+p2−p3)/2f (−x1 + x2)f (−x1 − x3)f (x2 − x3)

+ e(p1+p2+p3)/2f (x1 + x2)f (x1 + x3)f (x2 + x3)

+ e(p1−p2−p3)/2f (x12)f (x13)f (−x2 − x3) (3.22)

H− = e(−p1−p2−p3)/2f (−x1 − x2)f (−x1 − x3)f (−x2 − x3)

+ e(−p1+p2+p3)/2f (−x1 + x2)f (−x1 + x3)f (x2 + x3)

+ e(p1−p2+p3)/2f (x12)f (x1 + x3)f (−x2 + x3)

+ e(p1+p2−p3)/2f (x1 + x2)f (x13)f (x23) (3.23)

H̃2 = H+H− (3.24)

H̃3 = H 2
+ +H 2

−. (3.25)

We verify that theseHi and H̃ j strictly Poisson commute each other, which ensures the
complete integrability of theD2 andD3 RS models (in the Liouville sense).
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3.2. M operator associating with L

By comparing the symmetry of theDn RS model andBCn one, we propose the following
ansatz forM operator associating with the Lax matrixL so that they satisfy

L̇ = {L,H } = [M,L]. (3.26)

SupposeM to be another 2n × 2n matrix with the form

M =
(
A B
C D

)
(3.27)

where entries ofM are

Aij = cot(xij )

(
epj bj

sinγ

sin(xij + γ )
+ e−pi b′

j

sinγ

sin(xij − γ )
)

j �= i

Dij = cot(xji)

(
e−pj b′

j

sinγ

sin(xji + γ )
+ epi bj

sinγ

sin(xji − γ )
)

j �= i

Bij = cot(xi + xj )

(
e−pj b′

j

sinγ

sin(xi + xj + γ )
+ e−pi bj

sinγ

sin(xi + xj − γ )
)

j �= i

(3.28)

Cij = cot(−xi − xj )
(

epj bj
sinγ

sin(−xi − xj + γ )
+ epi b′

j

sinγ

sin(−xi − xj − γ )
)

j �= i

Aii = −

 n∑
j� =i

Aij
cos(xij )

+
n∑
j=1

Bij
cos(xi + xj )




Dii = −

 n∑
j� =i

Dij
cos(xji)

+
n∑
j=1

Cij
cos(−xi − xj )


 .

If we imposeBii , Cii an additional symmetry condition with

Bii = e2piCii (3.29)

verbose but straightforward calculations of equations

L̇ii = {Lii ,H } = ([M,L])ii =
2n∑
k� =i
(MikLki − LikMki) (3.30)

would yield

Bii = sin2 γ

Ciie−pi − Biiepi e
−pi


−2bib′

i

n∑
j� =i

(
cos(xi + xj )

sin(xi + xj + γ ) sin(xi + xj − γ )

+
cos(xi − xj )

sin(xi − xj + γ ) sin(xi − xj − γ )

)

+
n∑
j� =i

(
bib

′
j cot(xik)

sin2(xik − γ ) +
b′
ibj cot(xik)

sin2(xik + γ )
+
bibj cot(xi + xj )

sin2(xi + xj − γ )

+
b′
ib

′
j cot(xi + xj )

sin2(xi + xj + γ )

)
Cii = e2piBii . (3.31)



7586 K Chen and B-y Hou

As for the explicit expression ofBii , Cii , we have more simple forms for smalln:

• for n = 2,

Bii = 0

Cii = 0 (3.32)

• for n = 3,

Bii = 2

vi
e−pi cosγ cos(2xi) sin3 γ

Cii = 2

vi
epi cosγ cos(2xi) sin3 γ (3.33)

= e2piBii
• for n = 4,

Bii = 2

vi
e−pi cosγ cos(2xi) sin3 γ


2 cosxi sin2 γ +

n∑
j� =i

sin(xi + xj ) sin(xij )




Cii = 2

vi
epi cosγ cos(2xi) sin3 γ


2 cosxi sin2 γ +

n∑
j� =i

sin(xi + xj ) sin(xij )


 (3.34)

= e2piBii .
We have checked thatL, M satisfy the Lax equation of equation (3.26) which is equivalent

to the equations of motion equations (2.4) and (2.5) at least forn = 2, 3, 4, 5, 6 with the help
of the computer.

4. Non-relativistic limit to the Calogero–Moser system

It is natural that we must verify if the non-relativistic limit is correct. The procedure can be
achieved by rescalingpi �−→ βpi, γ �−→ βγ while lettingβ �−→ 0+ (here, 0+ is to avoid
undefinable limit ofBii andCii whenn = 2), and making a canonical transformation

pi �−→ pi + γ


 n∑
k� =i

(cot(xik) + cot(xi + xk))


 (4.1)

such that

L �−→ Id + βLCM +O(β2) (4.2)

M �−→ 2βMCM +O(β2) (4.3)

and

H �−→ 2n + 2β2HCM +O(β2). (4.4)

LCM can be expressed as

LCM =
(
ACM BCM

−BCM −ACM

)
(4.5)

where

(ACM)ij = δijpi + (1 − δij ) γ

sin(xij )
(4.6)

(BCM)ij = (1 − δij )
γ

sin(xi + xj )
.
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MCM is

MCM =
(ACM BCM

BCM ACM

)
(4.7)

where

(ACM)ij = − δij
n∑
k� =i

(
γ

sin2 xik
+

γ

sin2(xi + xk)

)
+ (1 − δij )γ cos(xij )

sin2 xij

(4.8)
(BCM)ij = (1 − δij )γ cos(xi + xj )

sin2(xi + xj )

which coincides with the form given in [11, 14] with the difference of a constant diagonalized
matrix.

The Hamiltonian of theDn-type CM model can be given by

HCM = 1

2

n∑
k=1

p2
k − γ 2

n∑
k<i

(
1

sin2 xik
+

1

sin2(xi + xk)

)
= 1

4
trL2. (4.9)

TheLCM, MCM satisfy the Lax equation

L̇CM = {LCM,HCM} = [MCM, LCM]. (4.10)

Remarks. As far as the forms of the Lax pair for the rational-type RS and CM systems are
concerned, we can get them by making the following substitutions

sinx → x
(4.11)

cosx → 1

for all of the above statements.

5. Summary and discussions

In this paper, we have presented the Lax pair for the classicaln-particle trigonometricDn

Ruijsenaars–Schneider model together with its rational limit. We give one explicit form of the
Lax pair for smalln such as 2, 3, 4 and show the involutive Hamiltonians could be generated
by the corresponding Lax matrix. For genericn we have constructed the Lax pair and given a
general form to it though lacking in a complete proof. But its correctness could be checked at
least for 2� n � 6. In the non-relativistic limit, this system naturally leads to the well-known
Calogero–Moser system associated with the root system ofDn.

Actually, our original aim is to expand our constructions to the dynamical systems
associated with all of the root systems. As suggested in [35] and [26],An−1 RS model
appeared in the Hamiltonian reductionprocedureapplied to the cotangent bundle over centrally
extended current group while the cotangent bundle over the centrally extended current algebra
was used to obtain the elliptic Calogero–Moser model [36, 37]. It is natural to expect similar
results for other root systems. Unfortunately, we fail in the corresponding constructions for
the systems associated with the root systems other thanAn−1. In fact, as was analysed in
[18], there are several obstructions to extend the constructions. Alternatively, they used the so
called ‘structure group’, which related to Weyl reflections, to process symplectic reduction to
construct the CM systems associated with the Hitchin system where the embedding was not
even a group but a semi-direct product of groups. Moreover, one has theBCn CM and RS
systems but they do not even correspond to groups. So the more general and elegant method to



7588 K Chen and B-y Hou

universal construction for the RS systems must combine all of characters appeared in previous
results and get over the obstructions mentioned above.

On the other hand, a more concrete method is to use pure algebraic construction, which
has made great success for CM systems [13, 14–17]. In the present paper, we try to follow this
idea and work out partial result forDn RS system where some formulas such as equations (3.6)
and (3.9) have revealed some characters of Weyl reflections. Though we have not obtained
universal description of this system, we hope these results would reveal some essential
ingredient for its integrability and shed some light on universal characters for generic RS
systems. At the same time, we address an interesting aspect that the reduction procedure
of using ‘structure group’ corresponding to RS systems and fixing certain momentum map
suggested in [38, 18] may be a potential method to accomplish the complete generalization
for RS systems associated with all of simple Lie algebra and even to all of root systems.
Moreover, the issue for getting ther-matrix structure for this model is deserved due to the
success of calculation for the trigonometricBCn RS system by Avanet al in [33].
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